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ABSTRACT

Emerging evidence of widespread pollinator declines has reinvigorated scientific interest in the
application of graph theory to mutualistic networks to help predict the asymptotic behavior of
ecological systems. These theoretical advances have yielded few useful conservation products,
primarily owing to the stifling cost of sampling pollination networks at scale. I introduce Imago, a
software tool for automatically extracting plant-pollinator visitation networks from image and video.
Imago employs a novel ’fat’ detector architecture, where a general classification model is applied to
each of an arbitrary number of partially-overlapping crops of a large parent photo. This technique
subverts the need for an expensive bounding-box detection dataset, while also allowing a unique
level of deployment-time accuracy vs. performance configurability. I validate the tool’s performance
against manual analysis for an empirical pollination network study, demonstrating that Imago can
potentially lower per-hour sampling costs for pollination ecology by several orders of magnitude.
Finally, I speculate on the possible impacts of ultracheap continuous sampling for network-theoretic
ecology, particularly for enabling considerations of pollination dynamics across time and space.

Keywords ecology · applied computer vision · detection

1 Introduction

Animal pollination of flowering plants is a process critical for maintaining global food security and biodiversity.
However, global pollinator populations are threatened by a synthesis of primarily anthropogenic threats, including
indiscriminate pesticide application, habitat destruction, and climatic disruptions. These forces particularly endanger
non-cosmopolitan native bees, whose relatively specialized requirements are especially difficult to fulfill relative to
those of generalist bees with a worldwide distribution.

The cooperative relationship between plants and their pollinators presents mutual benefits for the fitness and biodiversity
of both parties (cite). Diverse floral communities that exist across a wide swath of ecological niche space are needed to
maintain the full diversity of pollinator species for a given ecosystem. Thus, plant-pollinator networks, which map the
topology and ’strength’ of the mutualistic relationships between an ecosystem’s plant and pollinators, have emerged as
an important tool for theoretically understanding the function of pollination for maintaining diversity and stability in
biological systems.

Plant-pollinator networks (i.e. pollination networks) are a subset of bipartite graphs for which the two disjoint,
independent sets U and V respectively represent the set of all flowering plants and pollinators within an ecosystem.
Although it is popular to assume that pollination networks are square (ie. of equal cardinality) because of the relative
ease of modeling balanced bipartite graphs, empirical plant-pollinator networks are often imbalanced, and composition
of the sets U and V (hereafter plant P and animal A) can only be determined through field observation. Significant
effort is required to determine the full set of linkages between plants and pollinators for a specific location, and many
efforts are thought to suffer from undersampling [need to cite this]. Despite its expense, a fully-realized topological
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plant-pollinator network is only a first-order approximation of the interrealtional dynamics of a pollination system.
Its most fundamental (and perhaps most spurious) implicit assumption is that all plant-pollination linkages equally
influence the community’s dynamics. Most theorists find this to be an unreasonable assumption. As such, some
pollination networks additionally consider the relative intensity of interactions by weighting the edges of this graph to
reflect the number of times a particular plant-animal interaction was observed. The best method by which to weight
these quantitative plant-pollinator networks is hotly contested by theoretical ecologists, who have yet to reconcile basic
theoretical components for weighting the marginal impact of an additional association. Perhaps the most commonly-
used definition of interaction strength fails to distinguish between per-capita effects and interaction frequency, yielding
the strange property that abundant species (typically generalists) provide higher per-capita effects than rare species. This
assumption controverts the bulk of theoretical and empirical evidence, and yet this contradiction was only remonstrated
in 2019 [1].

Even if theorists agreed on a maximally informative quantitative weighting schema, empirical applications would still
be fundamentally constrained by a dearth of empirical information regarding the quality of plant-pollinator associations
(i.e. amount of pollen transferred & rewards conferred) and the persistent challenge of insufficient sampling. The
significant challenges that afflict field ecologists in sampling topological plant-pollinator networks are amplified when
dealing with quantitatively-weighted networks. Let us assume that a quantitative measure of linkage intensity will
minimally comprise of the relative commonality of each linkage. Then, at minimum, a proper sample must now saturate
the relative accumulation curve of each interaction. For any community of non-trivial species richness, any proper
measure of linkage abundance which requires that the least common interaction type occur at least twice will require
approximately an order of magnitude greater sampling effort than that required to sample a topological presence-absence
network2 This demands that we treat the temporal aspect of the network with greater precision: over what timespan do
we define our network? With sufficient sampling intensity, bi-weekly samples may be sufficient to encounter at least
one example of each plant-pollinator interaction, or at least capture a large fraction of the set of all possible linkages.
However, this temporal resolution may be wholly insufficient for generating approximately unbiased estimates of the
relative contribution of a linkage to a community of linkages, regardless of the precise mathematical form that this
contribution may take. Until excellent empirical quantitative networks can be cheaply sampled, network-theoretic
pollination ecology may be stuck as a cacophony of chattering theorists, with nary a testable hypothesis in sight.

This challenge is presented at a particularly critical juncture. The planet is experiencing a catastrophic collapse
in biodiversity, and yet is it estimated that 80% of insect biodiversity remains unknown to science[2][3]. Archaic
practices in biodiversity monitoring will be wholly insufficient for cataloguing the world’s biological complexity3,
much less comprehending its dynamics to such a degree that science will be able to develop efficient, effective targeted
interventions in service of biodiversity maximization. The few extant attempts to unravel the temporal dynamics of
pollination networks are often marred by significant compromises, presumably to dampen the burden of repeated
sampling. While limiting a study to a single site[5], waiting more than a month between samples[6], or surveying
phenologically-compressed, species-poor arctic systems[7] may not compromise the integrity of any single inquiry,
such concessions do inevitably constrain these studies’ contributions towards a generalized understanding of the
spatio-temporal structure of pollination.

Among the most severe manifestations of the global biodiversity information gap is in the field of bee conservation,
where an emerging chorus of dire findings (albeit, contested findings4) suggest that either global bee diversity is in
precipitous decline, or our global capacity for monitoring bee diversity and population dynamics has treacherously
declined in recent decades[9]. Any decline in insect abundance or diversity carries the potential for first-order knock-on
effects to pollination services, and thus pollination-dependent plant fitness. However, the nature and magnitude of
such effects are largely unknown, except for that limited knowledge gleaned from small-scale pollination-exclusion
experiments and empirically unverified simulation work. Ultimately, at the present moment, ecology has no means of

2I assume that at least one of the involved species (probably the pollinator) is Poisson-distributed with low λ [λ < 1]. Although
species may not be Poisson-distributed over the domain of the season, this is a reasonable assumption for any given sampling day for
which we know that it is biologically plausible that a given pollinator may occur. Provided these relevant conditions (phenology,
environment, obligate partner presence, etc.), we assume that occurrences of rare pollinators within a sample day are approximately
independent, the rate of their occurrence is approximately constant (notwithstanding weather changes throughout the day), and that
two occurrences will not occur simultaneously for t << 1sec.

3Biodiversity monitoring capacity is especially limited in the Earth’s tropics, which are home to a robust majority of the world’s
insect biodiversity[4].

4It is worth noting that evidence for ’global’ insect abundance and diversity declines is, at best, ambiguous. The evidence is
particularly weak in the United States, where Crossley et al. found in 2020 that there exists no evidence for such declines in the
US[8]. Importantly, this survey assessed a broad variety of taxa across >5,300 medium- to long-term time series collected at US
Long Term Ecological Research sites. More than half of the time series were collected at sites that are significantly disturbed by
human activities. The methodology employed in these long-term surveys are unusually robust, and this finding should enjoy an
elevated epistemological status.
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predicting the asymptotic behavior of plant-pollinator systems[10]. Network approaches to pollination ecology are the
means by which the field can gain such a capability. Spatio-temporal evolution is the next frontier of network science:
future work will treat pollination networks as dynamical systems whose linkages and weights are best represented as
time series[11]. Given the gravity of the current moment, this capability is needed as quickly as possible.

The quandry presented by potential global insect decline, the accompanying problem of data poverty, and the resultant
urgency and present-day infeasibility of predictive mutualistic network theory make apparent the pressing need for rapid
innovation in biodiversity and pollination monitoring technologies. I identify the primary constraint in contemporary
monitoring techniques as being its absolute dependency on human observation.

1.1 Contemporary best practices in visitation network sampling

A plant-pollinator visitation network consists of the set of all observed interactions between plants and plausible
pollinators, where an interaction is defined as physical contact between the pollinator and a reproductive structure
of a blooming flower. Although the purpose and design of the studies that involve these networks vary, their funda-
mental requirements are constant. Visitation records minimally require plant and pollinator taxonomic identities and
conventionally include observation time and place. 5.

Because fine-scale identification from momentary observation is impractical, observers attempt to non-destructively net
and euthanize the pollinator for post-hoc identification. If this netting is unsuccessful, observers record an approximate
’gross identification’ of the pollinator. To ensure standardized sampling times, observers are expected to pause their
sampling timers while netting and recording an observation. Observers monitor a small (3m2) defined area for a
particular amount of time (ex. 6 minutes) before rotating to another plot. During a typical field season, this lab may
deploy 8 persons for 10 weeks of fieldwork at an estimated cost of $68,8416. The lab typically maintains 14 field sites,
each of which is sampled for 90 minutes per week, for a total of 1,260 minutes (21 hours) of sample time per week for a
total of 210 hours of sampling time at an estimated cost of $328/hr. Because most expenses are tied to labor, fixed costs
are relatively low and the cost of additional sampling time scales approximately linearly7. An additional 100 hours of
sampling time costs approximately $30,0008.

Pollination monitoring using today’s methodologies is far too expensive to achieve the spatiotemporal scale and
resolution required for the next generation of network-theoretical pollination ecology. Although fixed costs will persist
for any methodology, their share of a project’s budget approaches zero at the limit of sampling intensity, whereas
marginal costs approaches 100% of project budget. Consequentially, the most effective means to reduce the cost of
generating large-scale visitation networks is to minimize the direct and indirect cost of labor via automation.

The objective of this study was to radically reduce the cost of scaling plant-pollinator visitation network studies by
developing a sampling strategy that minimizes the marginal cost of additional sampling time. In service of this objective,
I aimed to develop a tool to accurately extract plants, pollinators, and visitations from image datasets at a minimal
marginal cost. In this paper, I describe this tool and empirically assess its ability to extract a plant-pollinator visitation
network from photos via a field study. Finally, I evaluate the potential costs and benefits of employing image-based
sampling in place of or alongside conventional methods, and postulate novel macro-scale monitoring capabilities
enabled by Imago.

2 Materials & Methods

2.1 Dataset acquisition

Floral diversity, density, and visitations were sampled across 9 remnant tallgrass prairie sites in Eastern Kansas during
summer 2021. For each site, 3 parallel 50m transects were defined and circumscribed by a square 50m plot boundary.
Care was taken to ensure that plots were established along relatively flat saddles at least 100m from nearby groves and
lakes. A floral survey was completed along each transect at the beginning of pollinator sampling for each sample day.
Taxonomic identities and flowering head count were recorded for all anthesis-stage flowering plants within 0.5m of

5I employ the standard sampling practices of the University of Washington’s Brosi Lab, as employed at the Rocky Mountain
Biological Laboratory, as a representative example of best practices in visitation network sampling.

6Housing:$30800, Lab space:$4685, Station fees:$13356, Airfare: $4000, Wages:$16000. Estimates are based on 2022 RMBL
fee schedule, and assume 6 employees on lab payroll paid $400 weekly.

7This cost estimate is for a plant-pollinator network with only ’gross ID’ field identifications, and does not include the cost of
obtaining species-level identifications for the netted pollinator specimens.

8See Appendix for full simulated cost comparison.
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each transect centerline. An additional systemic walk was performed across the extent of each plot to identify and
record any flowering species not found along a transect. Both components were performed by a single observer.

A hybrid methodology of image-based random walks and video-based static monitoring was employed to jointly
maximize the sampling intensity and methodological standardization possible for a two-person sampling team. A
strictly standardized plot-based sampling schema as described above was determined to be impractical for a small field
team. Tallgrass prairie floral assemblages are relatively sparse, so I surmised that a 1-2 person sampling team would be
able to recover significantly more of the plant-pollinator links present for any sample day through selective allocation of
sampling effort on the basis of floral density9. 1-3 observers performed a random walk around the 50m square plot for
a cumulative total of at least 3hrs per sample. When a pollinator was seen visiting an active inflorescence, observers
attempted to capture a photo10 of the interaction and then net the pollinator. tIn order to evaluate the potential of Imago
as a tool for enhancing studies which require a higher degree of standardization, as well as its potential for passive
sampling, I implement video-based sampling. For each sample, at least 12 mins of video was recorded for each flower
species. A video camera11 was positioned on a tripod at a minimum of 2ft from each floral specimen, and was aimed
such that the target inflorescence was centered in frame. All photo and video data were offloaded from cameras into
unique site-observer folders following each sample.

Before beginning each sample’s visitation monitoring, a weather station12 was erected adjacent to plot boundaries.
All camera internal clocks were synchronized with that of the weather station. Temperature, relative humidity,
photosynthetically active insolation, and wind speed/direction were logged at 1 minute intervals for the entire duration
of visitation sampling. Each of 9 sites was visited approximately 3 times by across the length of the summer season. By
season’s end, 178 hours of video and 17,771 images collected across 106 hours of random walks combined for a total of
284 sample hours. Following the conclusion of the field season, all data were assessed for plant/insectoid presence and
insectoid-inflorescence visitations using a bespoke image processing tool I term Imago.

2.2 Processing pipeline

2.2.1 Design considerations

Imago is a pipeline13 of sequential image-processing algorithms, some of which are derived or co-opted from existing
open-source software. The tool was designed to be a flexible, general tool for zero-shot automatic visitation extraction.
Contemporary high-performance object detection algorithms are black boxes which present few opportunities for
understanding or addressing their own limitations short of retraining. Today’s popular open-source object detection
models reliably locate easily-resolved objects belonging to a modest set of relatively homogeneous classes. While
computationally cheap detection of common objects is an appropriate objective for most current applications, the
resultant compromises implicitly limit the utility of even finetuned object detection models to problems of small-object
detection. Even the coarse detection of insects and plants within the same photo is challenging. Automated approaches
must contend with extreme scale differences between plants and their pollinators, the tendency for pollinators to be
partially or completely obscured, and the unusual incidence of blurriness due to pollinator movement and depth-of-
field effects. The nature of these challenges is dependent upon camera type, photographer skill, and image capture
methodology. As such, a visitation extraction algorithm should be highly configurable: the assumptions and quantitative
heuristics employed by the pipeline should be maximally specifiable by the specialist user in order to best fit their
application’s needs. Most importantly, this user should be able to arbitrarily tune the accuracy vs. compute-cost
trade-off: the ability of the tool to extract visitations from a complex scene should be bounded by computational
resources rather than an algorithm’s architectural compromises. One-size-fits-all image detection algorithms fulfill few
to none of these design requirements.

Today’s two-stage and multi-stage object detection algorithms propose and refine image regions for classification
with remarkable efficiency. However, the architectural marriage of lossy region proposition and localization with
region classification has yielded monolithic tools which cannot easily take advantage of additional compute to improve
detection completeness and which require expensive localized (i.e. bounding box) training data. This precludes the
application of object detection techniques to domains where 1) large labeled detection datasets are unavailable 2) the

9The likelihood of ultra-low floral density in any given patch is possibly greater for systems with long-summers, where floral
phenologies overlap relatively less than in ex. high-alpine systems. Given that per-flower visitation activity is strongly positively
driven by floral density for lower densities[12], permissive sampling methodologies can be especially valuable for revealing more
topological links per sampling hour in long-summer systems such as the tallgrass prairie.

10All photos were captured with either a Canon 250D with EF-S 55-250m zoom lens or a Sony A6000 with E 55-210m zoom lens.
11All videos were captured with a Canon 250D with EF-S 55-250m zoom lens recording in 4k resolution at 30fps.
12Spectrum WatchDog 2900ET
13See Figure 1.
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graphical properties of target images diverge from those for which existing architectures are optimized. Although
general taxonomic classifiers can be trained from publicly-available datasets, general specimen-detectors cannot, and
today’s detectors systemically under-detect small objects relative to large ones, rendering these techniques an awkward
fit for plant-pollinator detection. Imago reformulates the multi-stage detector by de-optimizing region proposal and
performing region refinement after classification. This ’dumb detector’ architecture substantially reduces the costs
of applying automation to complex computer vision problems in niche domains which lack the economies of scale
to support the development of highly optimized, bespoke detection tools. I demonstrate that a robust classifier, when
applied to many indiscriminately-selected image regions, can function as a ’fat detector’ without expensive localized
datasets. This approach produces many overlapping detections, which can then be refined to reduce redundancy using
the some of the same region-refinement techniques employed by multi-state object detectors. By ’punting’ region
proposal efficiency, Imago is able to couple detection accuracy with additional compute resources, at the expense of
computational complexity and baseline localization accuracy. At a high level, the tool slices input image data into
sub-images, assesses each for plant or insectoid presence, and then assesses the relative proximity of detected specimens
to determine the plant-pollinator visitations within each image. Imago can be conceptualized as consisting of five linked
stages: pre-processing, slicing, specimen detection, post-processing, and visitation detection.

Parameter values which were held constant between both trial configurations are provided below (those which vary are
provided in Results).

2.2.2 Pre-processing

The preprocessing stage prepares raw photos and videos for further processing by converting videos into image
sequences and associating all images with appropriate metadata. Videos are converted into images by frame sampling.
The tool supports sampling at any frequency i frames per second, although constraints on high-speed storage space and
processing power may influence parameter choice (I chose to sample i = 2 fps). If weather data is provided, Imago
creates a database associating each image and sampled frame with spatiotemporal metadata and weather conditions
from the nearest minute.

2.2.3 Slicing

Images are then sliced at h scales of values S1−h, where each square slice of scale si overlaps neighboring slices of
the same scale by a ratio ϕ. Slicing is performed using a modified version of the Python package SAHI[13] which
downscales and passes slices directly to the remainder of the pipeline.

2.2.4 Specimen detection

Each slice is passed to a general specimen identification model14, which returns a taxonomic label and confidence
level for all identifications above specified minimum confidence threshold cg. If the detected specimen is within
the Bombus sp. genus, the slice is then passed to a bumblebee-specific model15 for a second identification. If this
second identification differs from that produced by the general model and is produced with a confidence score greater
than threshold cb, the slice’s taxonomic identification is overwritten. Both models are quantized according to the
TensorflowLite specification, and thus run on CPU only (along with the rest of the pipeline). If Imago is being used
outside of North America, where one is likely to encounter bumblebee species which are unidentifiable by the model,
then the pipeline can be configured to only use the general identification model. I specify confidence thresholds of
cg = 0.7 and cb = 0.8.

2.2.5 Post-processing

For any single image, increasing the number of unique image slices queried by identification models via multiscale
slicing monotonically increases the proportion of ground-truth specimens which are detected by the pipeline. However,
some specimens may be identifiable at multiple scales, causing the systemic overcounting of specimens. The ratio
of detected specimens to ground-truth specimens will increase as slicing is performed at more scales or with greater
overlaps. Thus, post-inference duplicate detection filtering is needed to minimize the recall vs. precision trade-off.

Duplicate detections are filtered per-species via a custom implementation of non-maximum suppression[cite: gil
werman], a common method among object detectors for selecting one box from many overlapping boxes. I assume
that the highest-confidence detection for a species is functionally analogous to the highest-confidence bounding box

14This general identification model was produced by iNaturalist and was originally utilized in the popular identification app
Seek[14].

15This model is a quantized version of the BeeMachine identification model[15].
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Figure 1: Imago extracts detects plants and pollinators by slicing input images, classifying slices, and post-processing
positive slices to remove duplicate detections caused by multi-scale inference. This creates a dataset containing all
the plants and pollinators detected in the input image dataset. This observation dataset can then be mined to find
plant-pollinator visitations in the input dataset. For any image, plant-pollinator visitations are extracted by assessing the
overlap of all slices containing a plant or pollinator. If any plant and pollinator overlap to a degree greater than overlap
threshold v, then a plant-pollinator visitation event is recorded in the outputted visitation dataset. Several parameters
can be tuned within the pipeline to optimize its behavior according to particular datasets or analytic goals.
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proposal in that it is the window which best frames the object of interest16. For every species detected within an image,
the IoU (intersection over union) is calculated between every detection slice d and the set of all detection slices a. All
isolated detections d for which IoUd,a = 0 are added to a ’keep’ list Ls. All other d are assigned to non-overlapping
stacks s, such that between-stack overlap IoUs1,s2,s... = 0, while within-stack overlap IoUs11,s12,s1... < 0. For every
s, the highest-confidence detection dmax is added to Ls. Then, the IoU between dmax and all other d for the same s
is calculated. All d that overlap with dmax by more than the minimum threshold m are added to Ls. For both trials,
m = 0.01.t

2.2.6 Visitation detection

Insectoid visitations to plants are determined by comparing the relative positions of each clade’s detections within each
photo. The smallest pixel distance between the bounding boxes containing each unique plant-pollinator pair is calculated.
If this distance is smaller then the minimum visitation overlap distance v, then a visitation is recorded. v is specified
assuming a 6000 x 4000 input photo resolution, although this value and the calculated smallest pixel distance are both
linearly scaled according to each image’s input resolution. The sensitivity for which an insectoid is determined to be
visiting an adjacent or overlapping plant can be modulated by adjusting v. Because this technique cannot distinguish
between insectoid visitations to plants’ reproductive vs. non-reproductive components, these visitation interactions are
distinguished from pollination interactions, which are a subset of the former. Visitations more closely approximate
pollination interactions if image data are collected in such a way that is triggered by manual observation of a likely
pollination interaction.

2.2.7 Experimental regimes

Specimen detections and visitations were manually validated for two configurations of Imago across two randomly-
selected 180-image subsets. Two experimental regimes were specified: configuration a simulates a ’lean’ pipeline
application, for which extremely poor quality images are manually excluded and processing power is at a premium.
These conditions reflect those which would be encountered in ex. a smartphone application, wherein users select
particular photos for processing. In contrast, b is a ’fat’ configuration which simulates a scientific application of Imago
for which detection completeness is weighed much more heavily than computational efficiency, and for which human
inputs are minimized. In this scenario, images are not pre-filtered (this would be impractical for large, messy field
image datasets), but a much larger proportion of region proposal space is sampled.

Specifically, for configuration a, input images are sliced at 3 scales, 28 extremely low-quality images are manually
excluded, and a minimum distance visitation criterion v = 500px was specified. However, blurry images where individual
insects or flowers can be discerned were preserved, even if these objects are unlikely to be precisely identifiable to even
an ideal taxonomist. Configuration b is more computationally expensive, slicing at h = 14 scales. Additionally, a more
lenient minimum distance visitation criterion v = 1000px was enforced. Metrics for experiment b are calculated across
the entire 180-image dataset: no manual pruning of poor-quality images is performed.

2.2.8 Validation metrics

Recall measures the ability of Imago to detect and identify to species every target present for an image, and is generically
calculated by (npredicted/nactual). For pollinators, recall is measured as npollsdetected/npollsactual. However, plant
recall is defined as nplantspeciesdetected/nplantspeciesactual, to reflect Imago’s inability to discern plant individuals
from tightly-framed inflorescence visitation images (a consequence of the extreme scale difference between flowering
plants and their insectoid visitors). Qualitative precision measures the likelihood that an image for which a positive
prediction is produced actually contains a positive sample. For pollinator detections, quantitative precision measures the
likelihood that the correct number of pollinator individuals is detected, given that at least one is detected for that image.
In the case of plant detections, quantitative precision measures that the correct number of species was detected, given
that at least one plant was detected. Finally, quantitative visitation precision measures the likelihood that the correct
number of visitations were extracted from an image, given that Imago detected at least one plant-pollinator interaction
for that image. The average time to process each photo (standardized at 6000px x 4000px) was recorded. All processing
was performed with a Intel 10700F processor. Because the pipeline is very I/O intensive, all images were stored on a
low-latency solid-state drive (SSD).

16I believe this assumption to be sound, except for the purpose of reducing qualitative false positives (erroneous detection of
species not present within a photo). The rate of qualitative false positives necessarily increases when region proposals are generated
for a greater number of scales h with higher overlap ϕ. This issue could be addressed by increasing the minimum classification
thresholds cg and cb for larger samples of region proposal space. This proposal is motivated by the observation that the likelihood
that the classifier evaluated a slice containing a well-framed view of each specimen within a photo increases monotonically with the
number of unique slices. However, I do not examine the form of cg,b(h, ϕ) here.
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3 Results

Regime Task
Counts

Recall
Precision

n images predicted/actual Qual. Quant.

config a

h = 3

selective

v = 500px

t = 3.3s/image

Visitations (all) 152 34/67 0.51 0.97 0.55

Detections (all)
Polls

152
45/84 0.54 1 0.43

Plants 110/162 0.68 0.99 0.87

Detections (well-resolved)
Polls

119
39/60 0.65 0.98 0.45

Plants 72/106 0.68 0.99 0.84

Detections (blurry)
Polls

33
2/7 0.29 1 0.21

Plants 20/30 0.67 0.97 0.91

config b

h = 14

non-selective

v = 1000px

t = 70.1s/image

Visitations (all) 180 188/119 0.71 0.99 0.54

Detections (all)
Polls

180
122/125 0.82 1 0.57

Plants 196/176 0.87 0.99 0.85

Detections (well-resolved)
Polls

149
105/109 0.82 1 0.6

Plants 162/145 0.92 0.99 0.83

Detections (blurry/very blurry)
Polls

31
16/14 0.92 1 0.4

Plants 26/25 0.88 0.96 0.92
Table 1: Comparison of detector performance for ’lean’ (a) and ’fat’ (b) configurations. Bolded text indicates the better
value for each metric. Ties are additionally italicized.

Imago capably extracts plants, insectoids, and their visitations from image data. Task performance is strongly dependent
upon pipeline configuration. The ’fat’ configuration b exhibits much stronger recall for both visitations (71% vs. 51%)
and detections (all pollinators: 82% vs. 54%; all plants: 87% vs. 68%). Pollinator recall especially benefits from
additional slicing scales, and a majority of pollinator detections occurred a smaller scale (≤ 1400px, see Figure 2).
This advantage persists despite configuration b facing a relatively more difficult task in processing images which were
not pre-filtered on the basis of quality.

Increased recall does not come at the expense of precision. A very high degree of qualitative precision ( > 96%)
persists across all categories for both configurations: nearly all images for which a positive sample was predicted indeed
contained a positive sample. Additionally, both configurations generally predict the correct number of plant species
within an image (> 83%).

However, both configurations struggle to correctly predict the correct number of insectoid individuals present within an
image. The slim configuration a exhibits better quantitative pollinator precision than is the fat configuration b, but both

Visitation recall performance depends upon the leniency of the minimum distance visitation criterion v in addition to
plant/pollinator recall. I find that visitation recall for configuration b almost exactly matches what would be expected if
this metric was purely a function of pollinator and plant recall (0.82 ∗ 0.87 = 0.7134 0.71), whereas configuration a
exhibits better visitation recall than would be predicted by this proposition (0.54 ∗ 0.68 = 0.3672 < 0.51). This result
is likely a artefact of poor plant localization for configuration b due to NMS being an inappropriate region refinement
algorithm for high-h (see Discussion).

3.1 Inferred network validation

4 Discussion

Imago produces lossy, conservative approximations of ground truth for measures of both plant and pollinator presence
and interactions. Imago is heavily biased Type-II errors of omission: while an image for which Imago reports a
detection or visitation almost always contains one, the tool frequently fails to record interactions which would have
been discernible by a human observer. This characteristic was an expected outcome of Imago’s architecture, which was
designed in a way that maximizes the predictability of the trade-offs made at each stage in the pipeline. minimizes
false-positives by using a highly generalized classifier, which is inherently more robust against false positives caused by
erroneous classification of out-of-sample objects. Visitations benefit from another layer of architectural robustness:
a false positive requires the overlapping detection of both a plant and a pollinator, meaning that the likelihood of an
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Figure 2: The scales at which plants and pollinators are resolved are bimodally distributed. Plants are most commonly
identifiable around a peak of 1000px and a smaller peak around 2800px. A much greater proportion of pollinator
detections are at smaller scales. Most detections are clustered around a peak of 400px, while a smaller number are
resolved at a scale of 3000px. Expanding the domain of slicing scales would likely yield additional detections of both
plants and pollinators. These metrics were obtained using the 180-image subset used for the h = 14 slicing regime
described in Table 1.
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erroneous positive is a compounded function of the (already-low) likelihood of at least one erroneous false-positive
plant or pollinator detection in the same region as another false or true positive detection.

Imago provides multiple ’knobs’ with which one can fine-tune the tool’s detection and filtering processes to produce
a more idealized outcome. The number of slicing scales and the amount of slice overlap can both be modulated to
increase the likelihood that the classifying model gets a ’good look’ at each plant or pollinator in the dataset. Such
decisions will be left to the discretion of the user and their computational resources, as increases to these parameters
will increase the time complexity of the algorithm by approximately O(n) and O(n2), respectively.

Some researchers may care about the number of pollinators present in each photo. Quantitative precision could be
improved by

The ability of the tool to detect pollinators is strongly dependent upon the quality of the input image. The tool
particularly struggles to recover pollinators from blurry images Although I hypothesize that the error distribution is
similar for Imago-aided and manual network sampling, comparing the quantitative rates of errors across methodologies
is challenging. Importantly, it is unclear how the recall performance of Imago compares to mainstream techniques for
sampling visitation network, as these techniques produce unquantifiable uncertainties. Manual observational sampling
can only quantify the missed interactions that were seen and leave no persistent record which can be reviewed post-hoc
to quantify sampling uncertainty or to backfill missing observations. The same basic factors constrain the performance
of both an unaided human observer and one sampling with the aid of Imago. A pollinator is more likely to be missed
if it is, for example, small, or inconspicuously colored, or it moves in an unpredictable way. It is thus likely that
samples produced by Imago are biased in a similar way to those produced by manual sampling. However, image-based
sampling enables the researcher to measure and retroactively improve the quality of their samples. Autonomous
imaging techniques, in particular, could potentially provide an excellent baseline for ascertaining sampling bias for
small or elusive pollinators. Video and timelapse data provide a persistent ground-truth for pollinator activity which is
completely independent of human observers: no human must notice a pollinator for it to be included in this data. One
could study this record to estimate the rate at which humans miss the presence of inconspicuous pollinators and perhaps
apply corrections to records generated by photo or manual observational methods.

The tool consistently missed some flowers (ex. Erigeron speciosus) whose species cannot be reliably determined from
their inflorescence alone. However, this issue is partially mitigated for studies which pair visitation samples with floral
surveys, as a complex of morphologically similar taxa will often only be represented by a single species for a single
sample unit. In these circumstances, the tool still generally returns a cluster of medium-confidence detections of similar
flowers (ex., a cluster of 4 Erigeron species, p 0.6), but none of these detections will surpass the threshold for inclusion.
A lower threshold for inclusion could be specified, and species-level identifications could then be backfilled. A method
could be devised to automatically detect such clusters of multiple taxonomically-similar flower identifications. The user
could either be prompted to clarify these identifications, or the program could itself reference the floral species survey
to determine the correct species for an ambiguous detection. This capability would improve Imago’s recall performance
for both plant detections and visitations.

The relatively enhanced visitation recall of the slim configuration a is likely a product of larger post-refinement
plant bboxes. Almost all images w/ pollinator also contain a proximate plant, since that is the condition for taking
photo. Thus, if appropriate bboxes are conserved for both plant and a visiting pollinator, then the likelihood of
a visitation should be nearly independent of v. Indeed, a stricter visitation condition v can only result in poorer
visitation recall, implying that v cannot explain the better-than expected performance of a. Thus, the relatively poorer
recallvisitation(recalldetectionpollinator

, recalldetectionplant
) performance of b must hail from poorer localization of

either plants or their visitors. Because moving from scenario a to b improves pollinator recall (0.54 → 0.82) 38% more
than it does plant recall (0.68 → 0.87), and because pollinators are much more likely to be detected at small scales than
are plants (see Figure 2), Therefore, I conclude that post-refinement plant detections are probably more poorly localized
for configuration b. This conclusion is supported by mechanistic analysis. Given that plants are much larger than
pollinators, and many more plant detections are at large scales, it should be much more likely that all plant detections in
a photo overlap than pollinators. The region refinement algorithm NMS only guarantees that 1) all non-overlapping
detections and 2) the highest-confidence detection within each stack are preserved. Thus, pollinator detections are less
likely to be mistakenly discarded on the basis of region refinement. It is unclear that plant duplicate detections should
be filtered, given that the purpose of plant detection is region localization rather than individualization. If plant filtering
is desirable, then NMS is probably a poor choice. Plant region refinement should instead prioritize the construction
of tight region proposals, likely via biased conservation of dense, small detection slices for stacks with at least one
very-high confidence detection.

One blind spot: species identification accuracy. - iNaturalist model: is there literature on its accuracy? - The IDs are
much stronger than what is possible for a human observer, who can only identify to a gross ID in the field. - IDs
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produced by the model can always be reviewed post-hoc, unlike field IDs. - They could capture every pollinator, but at
obvious additional expense and latency.

- Estimated cost. - Approximate time investment (labeling training inference cleaning of results). - Compare
field-deployable options for pollination monitoring. - Manual monitoring - Active image-based sampling (what I did)
- Benefits: - Generally higher-quality image and video data than that what would be produced by place-and-forget
cameras left in the field. - For photo-sampling: if observer is unable to net specimen, then they will at least have picture.
This resolves a sampling inconsistency wherein observers with taxonomic expertise can infer approximate identifications
for missed pollinators, while less experienced observers may fail to identify or provide erroneous classification of the
same specimens. - Video-based monitoring allows for the quantification of Type II error rate, as video data can be
analyzed post-hoc to measure visitations missed by Imago. While motion-triggered camera traps tremendously reduce
storage requirements per sample hour, sampling error cannot be quantified unless paired with manual or trigger-free
sampling. Imago allows for a flexible data retention policy. - Challenges: - Monitoring via citizen science (iNat) -
Could compare my sample (from field) to that uploaded to iNat in the region over the same time period. - Passive
image-based monitoring. - Benefits: - Could capture several magnitudes of order more interaction data. - Fill in sample
gaps (weather, changing conditions over season, very short-lived species) - Challenges: - Technical

5 Future Work

- **Future goal: develop device for unattended active plant-pollinator monitoring.** - Revisit this goal: may not
be necessary if ’dumb’ passive image-based sampling works well enough. - Model-assisted labeling. - Potential to
substantially speedup the biggest burden in this methodology.

6 Conclusion

- The full pipeline is published as a docker image. - How to adapt the pipeline for other studies / ecosystems? - Brief
details, indicate that more extensive documentation will be available in a GitHub repo. - Imago should be particularly
useful for those applications which are relatively insensitive to Type II errors and minor taxonomical errors, but which
would benefit greatly from increased temporal and spatial scale.
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